第九中文网 - 仙侠小说 - 求道九州在线阅读 - 伯克利

伯克利

    AcardinalκisaBerkeleycardinal,ifforanytransitivesetMwithκ∈Mandanyordinalα<κthereisanelementaryembeddingj:MMwithα<critj<κ.ThesecardinalsaredefinedinthecontextofZFsettheorywithouttheaxiomofchoice.

    TheBerkeleycardinalsweredefinedbyW.HughWoodininabout1992athisset-theoryseminarinBerkeley,withJ.D.Hamkins,A.Lewis,D.Seabold,G.HjorthandperhapsR.Solovayintheaudience,amongothers,issuedasachallengetorefuteaseeminglyover-stronglargecardinalaxiom.Nevertheless,theexistenceofthesecardinalsremainsunrefutedinZF.

    IfthereisaBerkeleycardinal,thenthereisaforcingextensionthatforcesthattheleastBerkeleycardinalhascofinalityω.ItseemsthatvariousstrengtheningsoftheBerkeleypropertycanbeobtainedbyimposingconditionsonthecofinalityofκ(Thelargercofinality,thestrongertheoryisbelievedtobe,uptoregularκ).IfκisBerkeleyanda,κ∈MforMtransitive,thenforanyα<κ,thereisaj:MMwithα<critj<κandj(a)=a.

    Acardinalκiscalledproto-BerkeleyifforanytransitiveMκ,thereissomej:MMwithcritj<κ.Moregenerally,acardinalisα-proto-BerkeleyifandonlyifforanytransitivesetMκ,thereissomej:MMwithα<critj<κ,sothatifδ≥κ,δisalsoα-proto-Berkeley.Theleastα-proto-Berkeleycardinaliscalledδα.

    WecallκaclubBerkeleycardinalifκisregularandforallclubsCκandalltransitivesetsMwithκ∈Mthereisj∈E(M)withcrit(j)∈C.

    WecallκalimitclubBerkeleycardinalifitisaclubBerkeleycardinalandalimitofBerkeleycardinals.

    Relations

    IfκistheleastBerkeleycardinal,thenthereisγ<κsuchthat(Vγ,Vγ 1)ZF2 “ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”(Vγ,Vγ 1)ZF2 “ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”.

    Foreveryα,δαisBerkeley.ThereforeδαistheleastBerkeleycardinalaboveα.

    Inparticular,theleastproto-Berkeleycardinalδ0isalsotheleastBerkeleycardinal.

    IfκisalimitofBerkeleycardinals,thenκisnotamongtheδα.

    EachclubBerkeleycardinalistotallyReinhardt.

    TherelationbetweenBerkeleycardinalsandclubBerkeleycardinalsisunknown.

    IfκisalimitclubBerkeleycardinal,then(Vκ,Vκ 1)“ThereisaBerkeleycardinalthatissuperReinhardt”.Moreover,theclassofsuchcardinalsarestationary.

    ThestructureofL(Vδ 1)

    IfδisasingularBerkeleycardinal,DC(cf(δ) ),andδisalimitofcardinalsthemselveslimitsofextendiblecardinals,thenthestructureofL(Vδ 1)issimilartothestructureofL(Vλ 1)undertheassumptionλi.e.thereissomej:L(Vλ 1)L(Vλ 1).Forexample,Θ=ΘL(Vδ 1)Vδ 1,thenΘisastronglimitinL(Vδ 1),δ isregularandmeasurableinL(Vδ 1),andΘisalimitofmeasurablecardinals.